Stay Updated! Subscribe to The Primer

Home » Drug Development » Parp1 Inhibitor Takes on Pancreatic Cancer

PARP1 INHIBITORS

PARP1 inhibitors are back in the headlines after Astra Zeneca’s (Cambridge, England) and Merck’s (Kenilworth, New Jersey) Lynparza approval by FDA to treat pancreatic cancer patients based on the positive Phase III results. Pancreatic cancer is a notoriously difficult cancer to treat. Lynparza has been shown to help patients with BRCA-mutated metastatic pancreatic cancer live longer without their cancer progressing. The drug has already gained two FDA approvals for BRCA-mutated breast and ovarian cancers. In this article, we’ll take a look at what PARP1 inhibitors are and their connection to BRCA-mutated cancers.

DNA DAMAGE RUNS DEEP

PARP1 inhibitors work by exploiting the cellular pathways found in DNA damage repair. So, how exactly does DNA get damaged?

DNA incurs approximately 10,000 to 1,000,000 “molecular lesions” per day from breaks or “nicks” to the double helix or chemical modification to the A, C, G, or T bases. This may sound high—but remember, our DNA contains six billion bases (three billion base pairs), so this is equivalent to .001% to .1% of the total DNA in each cell. This damage occurs due to normal DNA replication errors and environmental exposures, such as ultraviolet radiation, X-rays, and chemicals.

The good news is our cells have mechanisms to fight against this damage before it causes harm. DNA repair proteins find and fix different types of DNA damage. If DNA damage exceeds a threshold amount (beyond which repair is possible), a protein called p53 triggers cell death—also known as apoptosis. DNA repair proteins prevent errant cells from turning into cancerous cells, a likely outcome if the damage accumulates in genes important for regulating cell growth and division.

[wpcode id=”14842″]

BEHIND BRCA

Arguably the most famous DNA repair proteins, BRCA1 and BRCA2,  were first discovered to be active in breast tissue, hence the moniker “breast cancer type 1/2 susceptibility,” or BRCA. If these repair proteins are non-functional, the cells in which they would normally do their job are prone to sustaining DNA damage at a much higher rate than normal. This higher rate of DNA damage increases the chances of cancer developing in those cells. BRCA1/BRCA2 positive cancer is cancer that is associated with mutations in the BRCA1/BRCA2 genes. The mutations are most strongly associated with breast and ovarian cancer but are also associated with an increased risk of developing stomach, pancreatic, prostate, melanoma, leukemia, lymphoma, and colon cancer.

THE POINT OF PARP

PARP1 is a DNA repair protein. By stopping the PARP1 repair pathway in cells already deficient in BRCA1/ BRCA2-mediated repair, cancer cells become highly vulnerable to DNA damage. Because of this, DNA damage accumulates and triggers apoptosis. A PARP1 inhibitor is usually administered in combination with chemotherapy or radiation therapy, which increases the incidence of apoptosis-triggering DNA damage. Healthy cells, which still have BRCA repair pathways intact, are less sensitive to additional DNA damage.

BEYOND CANCER

Preclinical research suggests that PARP1 inhibitors may also be relevant to other disease areas, such as autoimmune and inflammatory disorders. PARP1 has been shown to play a role in activating proteins that drive inflammation. Preclinical models demonstrate that in cases without the PARP1 gene, subjects were less vulnerable to rheumatoid arthritis than with the gene. Inhibiting PARP1 resulted in reduced signs of inflammation in models of multiple sclerosis, irritable bowel disease, and allergic airway inflammation.

EASILY CONFUSED: DNA DAMAGE VS. DNA MUTATION

BRCA1, BRCA2, PARP1, and other DNA-repair proteins correct DNA damage but don’t fix mutations. What’s the difference?

DNA damage refers to alterations in the chemical structure of DNA. This may mean a break in the DNA strand, a substitution to one of the bases that make up DNA (A, C, G, or T), or even a missing base. These changes are detected and corrected by DNA repair enzymes.

A DNA mutation changes the base sequence (A, C, G, or T). Mutations can arise if DNA damage is not corrected. Recall that in undamaged DNA, an “A” base always pairs with a “T” base, and a “C” base always pairs with a “G” base. These base-pairing rules enable DNA to replicate faithfully from one generation of cells to the next. However, uncorrected DNA damage may cause that “A” base to mistakenly pair with a “G” during replication; or a “C” to pair with a “T.” This results in a sequence change —a mutation—in the replicated DNA. The gene now provides incorrect genetic information to the cell.

CONCLUSION

PARP1 inhibitors, like Lynparza, represent a significant advancement in the treatment of BRCA-mutated cancers, particularly the notoriously challenging pancreatic cancer. By targeting the DNA repair pathways, these drugs exploit the vulnerabilities of cancer cells, leading to their destruction. The distinction between DNA damage and DNA mutation is crucial in understanding the mechanism of action of these drugs. While the primary focus has been on cancer, the potential applications of PARP1 inhibitors in autoimmune and inflammatory disorders further underscore their promise in the realm of biomedicine. As research continues, the hope is that these inhibitors will bring about transformative changes in the therapeutic landscape, offering patients better outcomes and improved quality of life.

FREQUENTLY ASK QUESTIONS

1. WHAT ARE PARP1 INHIBITORS?

PARP1 inhibitors are drugs that target the PARP1 DNA repair protein. By inhibiting this pathway in cells already deficient in BRCA1/BRCA2-mediated repair, cancer cells become highly vulnerable to DNA damage, leading to their destruction.

2. HOW DOES DNA GET DAMAGED?

DNA undergoes approximately 10,000 to 1,000,000 molecular lesions per day due to breaks in the double helix or chemical modifications to its bases. This damage can arise from normal DNA replication errors and environmental exposures, such as ultraviolet radiation, X-rays, and chemicals.

3. WHAT IS THE SIGNIFICANCE OF BRCA1 AND BRCA2 PROTEINS?

BRCA1 and BRCA2 are DNA repair proteins. If these proteins are non-functional, cells are more prone to sustaining DNA damage, increasing the chances of cancer development in those cells.

4. HOW DO PARP1 INHIBITORS WORK IN TREATING CANCER?

Answer: PARP1 inhibitors stop the PARP1 repair pathway in cells already deficient in BRCA1/BRCA2-mediated repair. This makes cancer cells highly susceptible to DNA damage, causing them to undergo apoptosis or cell death.

5. ARE THERE OTHER POTENTIAL APPLICATIONS FOR PARP1 INHIBITORS BEYOND CANCER TREATMENT?

Yes, preclinical research suggests that PARP1 inhibitors may also be relevant to autoimmune and inflammatory disorders. PARP1 plays a role in activating proteins that drive inflammation, and inhibiting PARP1 have shown reduced signs of inflammation in models of various diseases.

6. WHAT IS THE DIFFERENCE BETWEEN DNA DAMAGE AND DNA MUTATION?

DNA damage refers to alterations in the chemical structure of DNA, such as breaks in the DNA strand or changes to the bases. DNA mutations, on the other hand, change the base sequence of DNA, which can arise if DNA damage is not corrected.

7. HOW IS LYNPARZA CONNECTED TO PANCREATIC CANCER?

Lynparza, developed by Astra Zeneca and Merck, has been approved by the FDA to treat pancreatic cancer patients, particularly those with BRCA-mutated metastatic pancreatic cancer, based on positive Phase III results.

Biotech Primer is your go-to source for interactive training across the biotechnology, pharmaceutical, molecular diagnostics, and medical device sectors. Explore a range of in-depth biotech courses designed to deepen your understanding of key principles and applications in the field.

Learn More

Other Articles You May Be Interested In

Powered By MemberPress WooCommerce Plus Integration